Cracking & Seating of Existing Jointed Non-Reinforced Concrete Pavements – Airfield Pavements in the United Kingdom

Antigo Construction Family of Companies

Antigo Construction, Inc.
Antigo International Inc.
MHB (UK) Ltd
Badger State Highway Equipment, Inc.

September 26, 2014
Concept

To minimize the extent and severity of reflective cracking in asphalt overlays of existing concrete pavements

Using the “fractured slab” technique:

Cracking & Seating
Principle of Cracking & Seating

Traditional Asphalt Overlay

Cracks are induced in the Asphalt layer due to large movements at the existing bay joints in concrete.

Typ. 350mm

“Crack & Seat” Pavement

Existing concrete cracked into small platelets, reducing movement thus allowing less asphalt to be used.

Typ. >300mm

150mm
Cracking & Seating

Equipment used for Cracking & Seating

8600 Badger Breaker® (guillotine-style breaker) 20-ton Pneumatic-Tired Roller (PTR)

- **Object**
 - To modify the existing characteristics of a rigid pavement into a more flexible structure while retaining as much of the pavement’s stiffness and strength as possible to minimise the required thickness of the asphalt overlay
 - To substantially minimize and delay the effects of reflective cracking

- **Design Criteria**
 - Assess the state of deterioration of the existing pavement in terms of the following to determine the Project’s suitability for cracking & seating:
 - Surface texture
 - Condition of joints
 - Existing cracking and other faults
 - Assess the required asphalt overlay thickness with consideration of the following:
 - Transverse and longitudinal profiles
 - Traffic use
 - Specification of asphalt to be used
 - Type of construction of the drainage
 - Curb depths
Cracking & Seating Process

- Crack the existing pavement using the parameters established during the trial and analysis stage
- Core once every 1000 square meters of cracked pavement to monitor effectiveness recording the results on a core log
- Roll the cracked pavement with a minimum of 6 passes using a 20-ton PTR
Typical Induced Crack

- Core taken from a 450mm thick pavement
- Broken core showing the good aggregate interlock
- Crack should be vertical throughout the depth of the core
Core Records

CORE ASSESSMENT FORM - for Crack & Seat

<table>
<thead>
<tr>
<th>Scheme:</th>
<th>6 HX</th>
<th>Date:</th>
<th>15-7-07</th>
<th>Name:</th>
<th>B. M. A. (E)</th>
</tr>
</thead>
</table>

Core Reference: 5

<table>
<thead>
<tr>
<th>Core Reference</th>
<th>5</th>
<th>Slab Number</th>
<th>A 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Position*</td>
<td>T 3</td>
<td>Chainage</td>
<td></td>
</tr>
<tr>
<td>Crack Length</td>
<td>100.1</td>
<td>Chainage</td>
<td></td>
</tr>
<tr>
<td>Drop Height</td>
<td>2.50</td>
<td>Core Depth</td>
<td>750</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td>Crack Width**</td>
<td>E V</td>
</tr>
</tbody>
</table>

Drops to halve: | 1 | Comply? | ✓ |

Core Reference: 6

<table>
<thead>
<tr>
<th>Core Reference</th>
<th>6</th>
<th>Slab Number</th>
<th>Y 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Position*</td>
<td>L</td>
<td>Chainage</td>
<td></td>
</tr>
<tr>
<td>Crack Length</td>
<td>100.1</td>
<td>Chainage</td>
<td></td>
</tr>
<tr>
<td>Drop Height</td>
<td>250</td>
<td>Core Depth</td>
<td>750</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td>Crack Width**</td>
<td>E U</td>
</tr>
</tbody>
</table>

Drops to halve: | 1 | Comply? | ✓ |

Core Reference: 7

<table>
<thead>
<tr>
<th>Core Reference</th>
<th>7</th>
<th>Slab Number</th>
<th>B 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Position*</td>
<td>T 2</td>
<td>Chainage</td>
<td></td>
</tr>
<tr>
<td>Crack Length</td>
<td>100.1</td>
<td>Chainage</td>
<td></td>
</tr>
<tr>
<td>Drop Height</td>
<td>250</td>
<td>Core Depth</td>
<td>380</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td>Crack Width**</td>
<td>F</td>
</tr>
</tbody>
</table>

Drops to halve: | 2 | Comply? | ✓ |

Core Reference: 8

<table>
<thead>
<tr>
<th>Core Reference</th>
<th>8</th>
<th>Slab Number</th>
<th>Z 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Position*</td>
<td>T 2</td>
<td>Chainage</td>
<td></td>
</tr>
<tr>
<td>Crack Length</td>
<td>100</td>
<td>Chainage</td>
<td></td>
</tr>
<tr>
<td>Drop Height</td>
<td>250</td>
<td>Core Depth</td>
<td>355</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td>Crack Width**</td>
<td>F</td>
</tr>
</tbody>
</table>

Drops to halve: | 2 | Comply? | ✓ |

Core position: n/s, centre, o/s = Impact No. (In direction of travel)

Crack width: **VF = very fine, **F** = fine, **EV** = easily visible

 Checked by: ___________________________

.QME 16 6/1/2006
Testing & Final Analysis

Cores showing any deviation from the normal tight, vertical crack may require a reassessment trial to establish any variations in the existing pavement (e.g. thickness or strength) which may require the resetting of the concrete breaker’s drop height.
Cracking & Seating
London Heathrow Airport
Photograph showing the 1m grid pattern used on the inner taxiways at London Heathrow Airport